Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
نویسندگان
چکیده
BACKGROUND Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i) the xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway and ii) the xylose isomerase (XI) pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3). The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate. RESULTS In defined mineral medium, the xylose consumption rate, the specific ethanol productivity, and the final ethanol concentration were significantly higher in the XR- and XDH-carrying strain, whereas the highest ethanol yield was achieved with the strain carrying XI. While the laboratory strains only fermented a minor fraction of glucose in the undetoxified lignocellulose hydrolysate, the industrial strain TMB 3400 fermented nearly all the sugar available. Xylitol was formed by the XR-XDH-carrying strains only in mineral medium, whereas in lignocellulose hydrolysate no xylitol formation was detected. CONCLUSION Despite by-product formation, the XR-XDH xylose utilization pathway resulted in faster ethanol production than using the best presently reported XI pathway in the strain background investigated. The need for robust industrial yeast strains for fermentation of undetoxified spruce hydrolysates was also confirmed.
منابع مشابه
Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains
BACKGROUND Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisat...
متن کاملReduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose.
In recombinant, xylose-fermenting Saccharomyces cerevisiae, about 30% of the consumed xylose is converted to xylitol. Xylitol production results from a cofactor imbalance, since xylose reductase uses both NADPH and NADH, while xylitol dehydrogenase uses only NAD(+). In this study we increased the ethanol yield and decreased the xylitol yield by lowering the flux through the NADPH-producing pent...
متن کاملComparison of xylose fermentation by two high-performance engineered strains of Saccharomyces cerevisiae
Economical biofuel production from plant biomass requires the conversion of both cellulose and hemicellulose in the plant cell wall. The best industrial fermentation organism, the yeast Saccharomyces cerevisiae, has been developed to utilize xylose by heterologously expressing either a xylose reductase/xylitol dehydrogenase (XR/XDH) pathway or a xylose isomerase (XI) pathway. Although it has be...
متن کاملExpression of a bacterial xylose isomerase in an industrial strain of Saccharomyces cerevisiae
Background The use of lignocellulosic biomass rather than fossil fuel is an environmental sustainable alternative for bioethanol production. However, fermentation of lignocellulosic hydrolysates by Saccharomyces cerevisiae is not viable since this yeast cannot ferment xylose naturally. Current, several studies are being developed to introduce a pathway that allows pentose fermentation by S. cer...
متن کاملBoost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbial Cell Factories
دوره 6 شماره
صفحات -
تاریخ انتشار 2007